668 research outputs found

    Heavy ions

    Get PDF

    Two- and Three-Pion Interferometry for a Nonchaotic Source in Relativistic Nuclear Collisions

    Get PDF
    Two- and three-pion correlation functions are investigated for a source that is not fully chaotic. Various models are examined to describe the source. The chaoticity and weight factor are evaluated in each model as measures of the strength of correlations and compared to experimental results. A new measure of three-pion correlation is also suggested.Comment: 19 pages, 6 figure

    Freeze-out from HBT and Coulomb Effects

    Full text link
    The freeze-out of hot and dense hadronic matter formed in relativistic nuclear collisions is probed by HBT interferometry of identical pions, kaons, etc. Coulomb repulsion/attraction of positive/negative particles show up at small particle momenta and is also very sensitive to the freeze-out conditions. The source sizes and times freeze-out are extracted from π/π+\pi^-/\pi^+ spectra and HBT radii and compared.Comment: 4 pages, proc. of QM'97, Tsukuba, Japa

    Many--Particle Correlations in Relativistic Nuclear Collisions

    Get PDF
    Many--particle correlations due to Bose-Einstein interference are studied in ultrarelativistic heavy--ion collisions. We calculate the higher order correlation functions from the 2--particle correlation function by assuming that the source is emitting particles incoherently. In particular parametrizations of and relations between longitudinal, sidewards, outwards and invariant radii and corresponding momenta are discussed. The results are especially useful in low statistics measurements of higher order correlation functions. We evaluate the three--pion correlation function recently measured by NA44 and predict the 2--pion--2--kaon correlation function. Finally, many particle Coulomb corrections are discussed.Comment: 5 corrected misprints, 14 pages, revtex, epsfig, 6 figures included, manuscript also available at http://www.nbi.dk/~vischer/publications.htm

    Observing Non-Gaussian Sources in Heavy-Ion Reactions

    Get PDF
    We examine the possibility of extracting non-Gaussian sources from two-particle correlations in heavy-ion reactions. Non-Gaussian sources have been predicted in a variety of model calculations and may have been seen in various like-meson pair correlations. As a tool for this investigation, we have developed an improved imaging method that relies on a Basis spline expansion of the source functions with an improved implementation of constraints. We examine under what conditions this improved method can distinguish between Gaussian and non-Gaussian sources. Finally, we investigate pion, kaon, and proton sources from the p-Pb reaction at 450 GeV/nucleon and from the S-Pb reaction at 200 GeV/nucleon studied by the NA44 experiment. Both the pion and kaon sources from the S-Pb correlations seem to exhibit a Gaussian core with an extended, non-Gaussian halo. We also find evidence for a scaling of the source widths with particle mass in the sources from the p-Pb reaction.Comment: 16 pages, 15 figures, 5 tables, uses RevTex3.

    Freeze-Out Time in Ultrarelativistic Heavy Ion Collisions from Coulomb Effects in Transverse Pion Spectra

    Get PDF
    The influence of the nuclear Coulomb field on transverse spectra of π+\pi^+ and π\pi^- measured in Pb+PbPb+Pb reactions at 158 A GeV has been investigated. Pion trajectories are calculated in the field of an expanding fireball. The observed enhancement of the π/π+\pi^-/\pi^+ ratio at small momenta depends on the temperature and transverse expansion velocity of the source, the rapidity distribution of the net positive charge, and mainly the time of the freeze-out.Comment: 11 pages including 2 figure

    (Anti)Proton and Pion Source Sizes and Phase Space Densities in Heavy Ion Collisions

    Get PDF
    NA44 has measured mid-rapidity deuteron spectra from AA collisions at sqrt{s}=18GeV/A at the CERN SPS. Combining these spectra with published proton, antiproton and antideuteron data allows us to calculate, within a coalescence framework, proton and antiproton source sizes and phase space densities. These results are compared to pion source sizes and densities, pA results and to lower energy (AGS) data. The antiproton source is larger than the proton source at sqrt{s}=18GeV/A. The phase space densities of pions and protons are not constant but grow with system size. Both pi+ and proton radii decrease with transverse mass and increase with sqrt{s}. Pions and protons do not freeze-out independently. The nature of their interaction changes as sqrt{s}, and the pion/proton ratio increases.Comment: 4 pages, Latex 2.09, 3 eps figures. Changes for January 2001. The proton source size is now calculated assuming a more realistic Hulthen, rather than Gaussian, wavefunction. A new figure shows the effect of this change which is important for small radii. A second new figure shows the results of RQMD calculations of the proton source size and phase density. Because of correlations between position and momentum coalesence does not show the full proton source size. The paper has been streamlined and readability improve

    Size of Fireballs Created in High Energy Lead-Lead Collisions as Inferred from Coulomb Distortions of Pion Spectra

    Full text link
    We compute the Coulomb effects produced by an expanding, highly charged fireball on the momentum distribution of pions. We compare our results to data on Au+Au at 11.6 A GeV from E866 at the BNL AGS and to data on Pb+Pb at 158 A GeV from NA44 at the CERN SPS. We conclude that the distortion of the spectra at low transverse momentum and mid-rapidity can be explained in both experiments by the effect of the large amount of participating charge in the central rapidity region. By adjusting the fireball expansion velocity to match the average transverse momentum of protons, we find a best fit when the fireball radius is about 10 fm, as determined by the moment when the pions undergo their last scattering. This value is common to both the AGS and CERN experiments.Comment: Enlarged discussion, new references added, includes new analysis of pi-/pi+ at AGS energies. 12 pages 5 figures, uses LaTex and epsfi

    Two-Proton Correlations near Midrapidity in p+Pb and S+Pb Collisions at the CERN SPS

    Get PDF
    Correlations of two protons emitted near midrapidity in p+Pb collisions at 450 GeV/c and S+Pb collisions at 200A GeV/c are presented, as measured by the NA44 Experiment. The correlation effect, which arises as a result of final state interactions and Fermi-Dirac statistics, is related to the space-time characteristics of proton emission. The measured source sizes are smaller than the size of the target lead nucleus but larger than the sizes of the projectiles. A dependence on the collision centrality is observed; the source size increases with decreasing impact parameter. Proton source sizes near midrapidity appear to be smaller than those of pions in the same interactions. Quantitative agreement with the results of RQMD (v1.08) simulations is found for p+Pb collisions. For S+Pb collisions the measured correlation effect is somewhat weaker than that predicted by the model simulations, implying either a larger source size or larger contribution of protons from long-lived particle decays.Comment: 10 pages (LaTeX) text, 4 (EPS) figures; accepted for publication in Phys. Lett.

    Periodic magnetoconductance fluctuations in triangular quantum dots in the absence of selective probing

    Full text link
    We have studied the magnetoconductance of quantum dots with triangular symmetry and areas down to 0.2 square microns, made in a high mobility two-dimensional electron gas embedded in a GaAs-AlGaAs heterostructure. Semiclassical simulations show that the gross features in the measured magnetoconductance are caused by ballistic effects. Below 1 K we observe a strong periodic oscillation, which may be explained in terms of the Aharanov-Bohm flux quantization through the area of a single classical periodic orbit. From a numerical and analytical analysis of possible trajectories in hard- and soft-walled potentials, we identify this periodic orbit as the enscribed triangle. Contrary to other recent experiments, this orbit is not accessible by classical processes for the incoming collimated beam.Comment: RevTex 8 pages, including 5 postscript figure
    corecore